COMPONENTES PC

- HP Victus 15L TG02-2010ns
- Intel Core i5-14400F
- RAM: 16GB
- HDD: 1TB SSD
- RTX 4060
- 736€ pccomponentes

EI VFR

Introducción

El vuelo VFR es la experiencia directa de pilotar usando el mundo como referencia. A diferencia del vuelo por instrumentos, donde la cabina dicta el movimiento, en VFR la mirada del piloto —sobre pueblos, carreteras, lagos y montes— guía la navegación y la evitación de peligros. Aprender a volar VFR bien no es sólo aprender procedimientos; es desarrollar juicio aeronaútico, anticipación y una rutina de planificación que convierte la vista en la más fiable de las ayudas de vuelo.

Altitud

Mínima legal

Según la normativa europea (y española), se deben respetar ciertas altitudes mínimas:

- Sobre zonas pobladas: al menos 1.000 pies sobre el obstáculo más alto en un radio de 600 metros.
- Sobre zonas no pobladas: al menos 500 pies sobre el terreno o cualquier obstáculo.
- Excepciones: durante despegues, aterrizajes o maniobras autorizadas, estas mínimas pueden no aplicarse.

Estas reglas buscan proteger tanto a las personas en tierra como al piloto, evitando situaciones de riesgo por vuelo demasiado bajo.

Fuera del circuito

En navegación en ruta, se aplica la regla hemisférica para mejorar la separación entre aeronaves:

Rumbos magnéticos de 090° a 269° (dirección oeste) → altitudes pares + 500 ft (ej. 4.500 ft, 6.500 ft).

• Rumbos magnéticos de **270° a 089°** (dirección este) → **altitudes impares + 500 ft** (ej. 3.500 ft, 5.500 ft).

Aplicación: esta regla se usa por encima de 3.000 ft AGL y solo en espacio aéreo no controlado o donde no se asignen niveles por ATC.

Esta técnica ayuda a mantener separación vertical entre aeronaves que vuelan en sentidos opuestos.

Factores que afectan la elección de altitud

- Meteorología: visibilidad, techo de nubes, turbulencia y viento pueden obligar a ajustar la altitud.
- Espacio aéreo: evitar zonas clase A (prohibido VFR), respetar límites de clase C/D/E y mantenerse fuera de zonas restringidas o peligrosas.
- Terreno: en zonas montañosas, se debe volar con margen suficiente sobre crestas y valles, considerando posibles corrientes descendentes.
- Consumo y rendimiento: algunas aeronaves ligeras tienen mejor rendimiento a altitudes medias; otras pueden verse limitadas por densidad del aire o temperatura.

Circuito de tráfico Aeródromo Procedimientos prácticos

Descripción básica: el circuito de tráfico es un patrón rectangular alrededor de la pista que organiza salidas y aproximaciones; normalmente tiene tramos: despegue, ascenso inicial, base, final y circuito de salida (en tránsito cruzado).

Configuración típica: pista, sentido del circuito (izquierda/derecha), altura de circuito (por ejemplo 800–1.000 ft AGL), y posiciones clave: salida cruzada, viento cruzado, base y final.

Entradas al circuito:

- Entrada de base: usada cuando se aproxima desde el sector del viento base; firmar posición y seguir hacia la base.
- Entrada directa a downwind: autorizado en aeródromos con tráfico bajo; mantener separación visual.
- Entrada cruzada (crosswind join): para integrar una salida en circuitos concurridos.

Salidas del circuito:

comunicar "salgo de circuito"; abandonar circuito por el tramo de viento de cara o por la salida publicada; mantener altitud de circuito hasta estar fuera del área de tráfico salvo instrucciones contrarias.

Buenas prácticas: visualizar el patrón antes de entrar; reducir potencia y configurar flaps según perfil; usar puntos de referencia en tierra para ablandar la referencia visual; escanear tráfego antes de entrar y durante el circuito.

03:53 06/11/2025 3/20 COMPONENTES PC

Comunicaciones VFR con ATC y aeródromo Frases y momentos

Antes arrancar motores: "ATC listo puesta en marcha LES31AT" anunciar intención en la frecuencia de aeródromo o ATC: identificación, posición, pista y rumbo/plan (ejemplo: "Escuela 12 listo en plataforma, circuito campo, pista 27").

Cuando lito rodar : "ATC listo rodar LES31AT" Entrada al circuito: "en base", "final", o "downwind" según corresponda; incluir posición y intenciones (p. ej., "final pista 09, rebase a la derecha").

Solicitar tránsito o autorización: en aeródromos controlados, pedir autorización para entrar al aeródromo; en no controlados, hacer autosincronizaciones y advertir posición con antelación.

Timing: emitir posiciones con suficiente antelación (p. ej., 10-5 NM para prepararse; dentro del circuito, en cada tramo importante).

Limitaciones operativas y meteorología esencial

Mínimos VFR básicos: visibilidad mínima y distancia a nubes según la normativa local; si están por debajo, no volar VFR.

Altitudes y separaciones: respetar altitud mínima sobre congestión, obstáculos y áreas sensibles; mantener separación visual de otras aeronaves.

Riesgos meteorológicos: baja visibilidad, techo de nubes, inversión térmica y niebla de radiación; planes alternativos y decisión temprana de volver o desviarse.

Limitaciones del avión y del piloto: comprobar peso y balance, combustible y limitaciones de velocidad o configuración; evaluar experiencia personal (no volar fuera de la zona de confort).

Espacio aéreo Clase A y otras clases relevantes Impacto en VFR

Clase A

Normalmente reservado para vuelos IFR sólo; los **vuelos VFR no están permitidos en clase A**, por lo que debes planificar rutas que la eviten o coordinar un cambio a IFR si procede. Como norma general está prohibido volar en el espacio aéreo de LEMD. Es importante ver las características de la clase, ya que suele tener un mínimo de altura de manera que mientras no entremos en esa área podremos volar.

Clases adyacentes (B, C, D, E, G)

Cada una tiene requisitos distintos de comunicación, nivel de servicio ATC y separación:

- Last update: 20:34 05/11/2025
 - Clase B y C: suelen requerir autorización explícita y transponder; entrar sólo con permiso.
 - Clase D: comunicación con control de torre obligatoria; seguir instrucciones de separación.
 - Clase E: puede permitir VFR sin contacto ATC pero con reglas específicas cerca de aeródromos controlados.
 - Clase G: espacio no controlado; alta responsabilidad del piloto para separación.

Consecuencias prácticas

Antes de despegar, trazar tu ruta para evitar clase A o gestionar autorizaciones; conocer requisitos de transponder, piloto responsable de mantener separación visual donde ATC no lo proporcione.

Riesgos frecuentes y mitigaciones rápidas

- Pérdida de referencia visual: bajar potencia y configurar para aterrizaje o virar hacia un punto claro; si persiste, solicitar instrucción IFR o regresar.
- Tráfico en circuito: reducir velocidad en downwind para dejar espacio, observar aviones en base y final, usar puntos de referencia.
- Cambios meteorológicos: tener alternates y combustible de reserva, decidir pronto "volver o no" antes de entrar en condiciones marginales.
- Errores de comunicaciones: repetir las instrucciones críticas; si dudas, pregunta de nuevo.

Checklist práctica resumida

- Antes del vuelo: meteo y NOTAM; ruta y alternates; peso y balance; combustible; transponder y equipo.
- En rodaje: anuncio de rodaje y verificación de pista.
- Antes del despegue: configuración, autorización, comprobaciones de motor.
- En circuito: posiciones claras en radio; mantener altitud de circuito; avisar salida.
- Tras el aterrizaje: clear runway, llamada al rodaje, entrada a plataforma.

EI IFR

Planificación de la Ruta (SkyVector):

Low Altitude (Baja Altitud): Perfecto para la TBM 930. Seleccionas esto porque tu avión vuela a altitudes de crucero típicas de la Clase A (por encima de 18,000 ft en EE. UU., pero en Europa se usan niveles de vuelo más bajos para aviones como la TBM), pero las aerovías de baja altitud (p. ej., Jet B, L-10, etc.) son las adecuadas para su perfil de vuelo.

Aerovías (Airways): Así es, las líneas negras (Jet Routes) y azules (Victor Airways) son las "autopistas" aéreas que conectan los waypoints y VORs.

Llegada al Aeropuerto (Cartas AIP):

STAR (Standard Arrival Route): Es lo PRIMERO que buscas para la llegada. La STAR te guía desde

03:53 06/11/2025 5/20 COMPONENTES PC

la estructura de rutas principales (las aerovías) hacia el entorno del aeropuerto, terminando usualmente en un punto desde donde el controlador te dará vectores o tú iniciarás la aproximación.

IAC (Instrument Approach Chart): Es lo que usas después, para el tramo FINAL. Una vez que el controlador te da la autorización para la aproximación ("Cleared for the approach") o tú te posicionas en el punto inicial (IAF), sigues la carta IAC específica para la pista activa (ej., ILS Z RWY 27).

☐ Un Detalle Importante: La "Transición" Un concepto clave que une la STAR y la IAC es la "Transición".

Las STARs suelen terminar en varios puntos (como LARDI en Bilbao o MALAGA en Sevilla).

Las cartas de aproximación (IAC) también pueden empezar en varios puntos (Ilamados IAF - Initial Approach Fix).

La Transición es el punto o segmento de la ruta que conecta el final de tu STAR con el inicio de tu aproximación. Al cargar el plan de vuelo en el FMS, debes seleccionar la transición correcta.

Ejemplo: Una STAR puede terminar en el punto MALAGA. La aproximación ILS a la pista 27 puede empezar en el punto LARDI. Tu FMS necesitará saber cómo quieres ir desde MALAGA hasta LARDI (esto es la transición).

☐ Cómo Llevar Esto a la Práctica en MSFS (Xbox) Dado que estás en Xbox, el planificador de vuelo integrado de MSFS es tu mejor amigo, porque automatiza este proceso:

- 1. En el menú principal, en "Plan de Vuelo", introduces Origen y Destino.
- 2. En "Arrival", seleccionas la STAR que quieres (ej., MALAGA1A).
- 3. En "Approach", seleccionas la aproximación (ej., ILS Z RWY 27).
- 4. El simulador elegirá automáticamente la transición más lógica y generará una ruta completa que incluye:
- Tu ruta desde el origen.
- La STAR.
- La transición.
- La aproximación final.

Al cargar en el avión, tu G3000 ya tendrá toda esta ruta programada. Tu trabajo será gestionar el descenso (usando el concepto de TOD que vimos) y luego activar el piloto automático en el modo APP cuando sea el momento.

Planificación (SkyVector) → Llegada (STAR) → Aterrizaje (IAC)

Fraseologia

□ Plantilla de Comunicaciones ATC - IVAO

Basado en fraseología OACI y procedimientos IVAO España Idiomas permitidos: Español e

Inglés

☐ Autorización IFR

Campo	Descripción	Ejemplo
Aeropuerto Origen	ICAO del aeropuerto de salida	LEMD
Aeropuerto Destino	ICAO del aeropuerto de destino	LEBL
SID	Ruta de salida asignada	MOKLU1S
Pista de Salida	Pista autorizada para despegue	36L
Nivel Inicial	Altitud inicial autorizada	5000 ft
Squawk	Código transpondedor asignado	4623
Información ATIS	Letra del ATIS vigente	Alfa

□ Rodaje

Campo	po Descripción	
Frecuencia GND	Frecuencia de rodaje	121.700 MHz
Ruta de rodaje	Calles asignadas por ATC	$L \rightarrow K \rightarrow K1$
Punto de espera	Posición antes de pista	K1 pista 36L

□ Despegue

Campo	Descripción	Ejemplo
Frecuencia TWR	Torre de control	118.100 MHz
Autorización	Confirmación de despegue	Autorizado pista 36L
Viento	Dirección e intensidad	350° / 8 kt

☐ En Ruta / Aproximación

Campo	Descripción	Ejemplo
STAR	Ruta de llegada asignada	NEMBO1A
Altitud asignada	Altitud que indica el ATC	FL250 → 3000 ft
Rumbo asignado	Rumbo que indica el ATC	270°
Frecuencia APP	Aproximación	120.900 MHz
Tipo de Aproximación	ILS, RNAV, VOR, etc.	ILS pista 32L

☐ Aterrizaje

Campo	Descripción	Ejemplo
Frecuencia TWR	Torre de llegada	118.100 MHz
Autorización	Confirmación de aterrizaje	Autorizado pista 32L
Viento	Dirección e intensidad	340° / 6 kt

□ Rodaje a plataforma

Campo	Descripción	Ejemplo
Frecuencia GND	Rodaje posterior al aterrizaje	121.700 MHz
Ruta de rodaje	Calles asignadas por ATC	$M \rightarrow J \rightarrow stand 204$

☐ Consejos para Simulación

- Usa **vPilot** o **Altitud** con audio claro.
- Consulta el ATIS antes de contactar con ATC.
- Mantén la fraseología concisa y profesional.
- Si tienes dudas, puedes decir:
 - o "Solicito repetición"
 - "Confirmo instrucciones"

¿Quieres que prepare una versión para vuelos VFR, emergencias o comunicaciones en inglés? También puedo ayudarte a crear una hoja de referencia rápida para imprimir o tener en pantalla mientras vuelas.

FASE	CUANDO	QUIEN	PILOTO	ATC
INICIO	AL CONECTAR	TOWER LECU	Jerez TWR, buenas tardes, solicitando rodaje y autorización de salida	ECATC, ruede a punto de espera DR pista 25, responda 3662, QNH 1020
RODAJE	TRAS AUTORIZACION VUELO		Listo para rodar, ECATC.	
ANTES ENTRADA PISTA	En punto de espera		Listo para salida, ECATC.	
AL SALIR CTR	CAMBIO A MADRID APP		Madrid Información, ECATC, saliendo de Cuatro Vientos, VFR a Córdoba, nivel 2500 pies, solicito servicio de información de vuelo.	
AL ENTRAR EN FIR SEVILLA		LEZL APP	Sevilla Información, ECATC, procedente de Cuatro Vientos, VFR a Córdoba, 2500 pies, solicito servicio de información de vuelo.	
LLEGADA LEBA		TORRE LEZL	ECATC, a 10 millas al norte del punto E1, 2500 pies, con intención de aterrizar, solicito información de tráfico y pista en uso.	
TAXI EN LEBA	?	?	?	

Ejemplos completos

Ejemplo de comunicaciones entre una aeronave VFR que sale de LECU (P) y su controlador/a (A):

 Con quién: Cuatro Vientos TWR (si está online en IVAO * Cuándo: Al conectarte y estar listo para preparar el vuelo

- P: En plataforma de aviación general, solicito rodaje con intenciones de TOMAS Y DESPEGUES en LEBA.
- A: ECATC, ruede a punto de espera DR pista 25, responda 3662, QNH 1020.
- P: Ruedo a punto de espera DR pista 25, respondo 3662, QNH 1020, ECATC.
- A: ECATC, ¿listo?
- P: Negativo, ECATC.
- P: Listo salida ECATC.
- A: ECATC, después de la salida vire a la izquierda hasta punto ECHO, suba para 1000 pies AGL o inferior, viento calma, pista 25 autorizado a despegar.
- P: Después de la salida viro a la izquierda hasta punto ECHO, subo para 1000 pies AGL o inferior, pista 25 autorizado a despegar.
- A: ECATC, notifique en ECHO, sin tránsito notificado.
- P: WILCO, ECATC.
- P: En punto ECHO, 1000 pies AGL, ECATC.
- A: ECABC, mantenga escucha en Barcelona Aproximación 126,500.
- P: Mantengo escucha en Barcelona Aproximación 126,500.

A continuación se presenta un ejemplo de comunicaciones entre una aeronave VFR que llega a Sabadell (P) y su controlador/a (A):

- P: Sabadell Torre, ECATC.
- A: ECATC, Sabadell Torre.
- P: En punto WHISKEY, instrucciones para aterrizar.
- A: ECATC, orbite en círculo izquierda hasta nuevo aviso, es número cuatro para la aproximación.
- P: Orbito en círculo izquierda hasta nuevo aviso, ECATC.
- A: ECATC, entre en viento en cola derecha pista 13.
- P: Entro viento en cola derecha pista 13.
- A: ECATC, notifique posición.
- P: A través de la torre, ECABC.
- A: ECATC, información de tránsito, tipo Cessna 172 en final pista 13, notifique tránsito a la vista.
- P: Tránsito a la vista, ECABC.
- A: ECATC, número dos, siga a la Cessna 172, [notifique en final pista 13.]
- P: Sigo a la Cessna 172, notifico en final pista 13, ECATC.
- P: En final pista 13, ECATC.
- A: ECATC, viento calma, pista 13 autorizado para aterrizar.
- P: Autorizado para aterrizar pista 13, ECATC.

AVIONES

C208B Grand Caravan

Fase	Acciones resumidas
☐ Before Start	Parking brake SET Fuel qty CHECK Fuel selectors BOTH Fuel cond. lever CUTOFF Power lever IDLE Avionics 1 ON Beacon & NAV ON Fuel boost ON (prime) Doors/windows CLOSED Prop area CLEAR
☐ COMUNICACION ATC	Buenos dias XXX Torre, listo puesta en marcha LES31AT
□ Engine Start	Starter ENGAGE At 12% Ng → Fuel cond. lever LOW IDLE Monitor ITT/Ng/Np Generators ON Avionics 2 ON
☐ After Start	External power OFF CAS msgs CHECK ESP DISABLE Trims SET Altimeters SET (BOTH)
☐ COMUNICACION ATC	XXX Torre, listo rodar LES31AT
□ Taxi	Taxi light ON Brakes CHECK Flight instruments CHECK Controls FREE & CORRECT
☐ COMUNICACION ATC	XXX Torre, en espera entrada pista LES31AT
☐ Before Takeoff	Briefing CONFIRM Flaps SET (20°) Fuel cond. lever HIGH IDLE Fuel selectors BOTH Ignition ON Ext. lights (Landing+Strobe) ON Transponder ALT
→ Takeoff	Power FULL (Torque ~1600, ITT <740°C) Rotate ~70 KIAS Positive climb → Flaps UP
☐ After TO / Climb	Landing lights OFF Ignition AS REQ Climb power SET Flaps UP Altimeters SET
□ Cruise	Power SET (Torque 1200-1400) Condition lever LOW IDLE Lights AS REQ

Fase	Acciones resumidas
↓ Descent	Approach briefing CONFIRM Passenger signs ON Minimums SET Altimeters SET Pitot/anti-ice AS REQ
□ Landing	Fuel selectors BOTH Prop lever FULL FWD Ignition ON Ext. lights ON Flaps SET (≤125 KIAS full) Final ~80-85 KIAS
☐ After Landing	Flaps UP Fuel cond. lever LOW IDLE Trims NEUTRAL Transponder 2000 Landing/Strobe OFF Pitot heat OFF
□ Parking	Fuel selectors 1 OFF Beacon OFF Fuel boost OFF Parking brake/chocks AS REQ Seat belts OFF
☐ Securing Aircraft	All switches/lights OFF Control lock INSTALLED Parking brake RELEASE Power lever IDLE Prop lever FULL FWD Fuel cond. lever CUTOFF Fuel selectors OFF Covers/chocks INSTALLED

TBM 930 en MSFS

Procedimientos:

Puesta en marcha:

- Poner baterías en BATT
- Fuel boost ON
- FUEL PUMP ON
- INERT ON
- Con potencia en CUT OFF

Arranque

- Dos segundos IGNITION ON y soltar.
- Subir Potencia a LOW IDLE
- Subir a TAXI Potencia

1. Innsbruck (LOWI) → Courchevel (LFLJ) 🛘 Tipo: Montaña extrema
→ Duración: ~1h
□ Desafío: Aproximación visual en pista inclinada y corta
□ Ideal para practicar descenso en terreno montañoso con la TBM
2. Madeira (LPMA) → La Palma (GCLA) 🏻 Tipo: Islas volcánicas
→ Duración: ~1h 15min
Desafío: Aproximación RNAV con vientos cruzados y terreno elevado
Perfecta para usar procedimientos RNP y disfrutar del Atlántico
3. Queenstown (NZQN) \rightarrow Milford Sound (NZMF) \square Tipo: Fiordos neozelandeses
→ Duración: ~30 min
Desafío: Navegación visual entre montañas y clima cambiante
Una de las rutas más bellas del mundo, ideal para la TBM por su maniobrabilidad
4. Paro (VQPR) → Kathmandu (VNKT) 🛘 Tipo: Himalaya extremo
→ Duración: ~1h 30min
□ Desafío: Altitud elevada, aproximaciones rodeadas de picos
Solo para valientes: Paro es uno de los aeropuertos más difíciles del mundo
5. San Sebastián (LESO) → Córdoba (LEBA) □□ Tipo: Ruta nacional con encanto
→ Duración: ~1h 45min
Desafío: Tránsito por espacio aéreo controlado, ideal para practicar IFR
☐ Perfecta para vuelos en red (IVAO/VATSIM) y disfrutar de paisajes ibéricos
□ ¿Cómo elegir la mejor? Estilo de vuelo Ruta sugerida ¿Por qué? Visual extremo NZQN → NZMF Fiordos y maniobras cerradas IFR realista LPMA → GCLA RNAV pura con vientos Montaña técnica LOW → LFLJ Pista inclinada y corta Aventura exótica VQPR → VNKT Himalaya y altitud Regional español LESO → LEBA Familiar y controlado
Plan de vuelo espectacular para tu TBM 930 en Microsoft Flight Simulator, desde Queenstown (NZQN) hasta Milford Sound (NZMF)

☐ Ruta recomendada

1. Salida desde NZQN (Queenstown)

• Pista sugerida: RWY 23

Last update: 20:34 05/11/2025

• Ascenso inicial hacia 6,000 ft

Rumbo aproximado: 240°

Sobrevuelo de Skippers Canyon

Paisaje escarpado y cinematográfico

Mantén rumbo 260°, asciende a FL100

Paso por el glaciar Donne y Sutherland Falls

Rumbo 270°, reduce velocidad para disfrutar las vistas

Ideal para capturas fotográficas

Descenso hacia Milford Sound (NZMF)

Inicia descenso suave a 3,000 ft a 15 NM del destino

Rumbo final: 280° hacia RWY 29

Aterrizaje en NZMF

Pista RWY 29 (797 m de longitud, asfalto)

Altitud del aeropuerto: 10 ft AMSL

Cuidado con ráfagas de viento y terreno elevado

A320neo

Esta guía explica cuándo y cómo programar el descenso para que el A320neo descienda automáticamente.

Concepto Clave: Top of Descent (TOD)

- ¿Qué es?: El punto donde debe comenzar el descenso desde altitud de crucero hasta la altitud de aproximación.
- ¿Quién lo calcula?: El FMGC (sistema de gestión de vuelo) lo calcula automáticamente.
- Regla práctica: El avión necesita aproximadamente 3 millas náuticas por cada 1000 pies de descenso.

Cómo y Cuándo Poner la Altitud de Destino

Paso 1: Preparación (≈ 100-150 millas antes del destino)

- En el FCU (panel superior), GIRAR la perilla de ALTITUD:
 - 1. Poner la altitud del aeropuerto o altitud inicial de aproximación (ej: **3000 pies**)

• NO EMPUJAR la perilla todavía

Paso 2: Activación del Descenso (En el TOD)

- **Cuándo**: Cuando en el **ND** (Navigation Display) aparezca el ▼ (triángulo amarillo) en la ruta.
- Acción: EMPUJAR la perilla de ALTITUD
- Resultado:
 - 1. En PFD: **DES** modo aparece en magenta
 - 2. El avión comienza a descender automáticamente
 - 3. Sigue el descenso gestionado

Tabla: Estados del Descenso

Situación	Perilla ALT	Indicación PFD	Significado
Crucero	Alt. crucero	ALT CRZ	Mantiene altitud
Preparado	Alt. destino (ej: 3000)	ALT CST	Listo pero no desciende
Descendiendo	Alt. destino (EMPÚJADA)	DES	Descenso activo gestionado
Interrupción	Nueva alt. (TIRAR)	OP DES	Descenso a velocidad seleccionada

Cómo Saber el Momento Exacto

Método 1: ND (Navigation Display)

- En modo ARC o ROSE, busca el triángulo amarillo (▼) en la ruta
- Distancia al TOD: aparece numéricamente en la parte superior del ND
- Cuando el triángulo llega a la posición actual: es el momento de empujar

Método 2: Fórmula Rápida

Millas para comenzar descenso = (Altitud actual - Altitud destino) \div 1000 \times 3

Ejemplo: De 35000 a 3000 pies = $(35000 - 3000) = 32000 \div 1000 = 32 \times 3 =$ **96 millas**

Método 3: MCDU PROG Page

- En página PROG del MCDU, busca T/D
- Muestra distancia exacta al Top of Descent

Errores Comunes

- "El avión no desciende": Has girado la perilla pero no la has empujado
- **Descenso brusco**: Has **tirado** la perilla en lugar de empujarla (modo OP DES)
- Paso de altitud: No poner altitud menor en destino

Last update: 20:34 05/11/2025 Proceso Completo

- 1. ≈ 150 millas antes: Girar perilla ALT a altitud destino (ej: 3000)
- 2. Monitorizar ND: Esperar triángulo amarillo del TOD
- 3. En TOD: EMPUJAR perilla ALT
- 4. Verificar PFD: Aparece DES en magenta
- 5. Durante descenso: Preparar velocidad, flaps y tren

Modos de Descenso

- DES (Managed): ▼ Magenta Siente perfil vertical óptimo
- OP DES (Open Descent): ▼ Blanco Desciende a velocidad seleccionada
- **V/S**: Desciende a ratio vertical seleccionado

Recomendación: Usar siempre **DES** (managed) para mayor eficiencia.

</code>

Guía FMC/MCDU A320neo - Datos Esenciales desde SimBrief

Esta guía te muestra qué datos mínimos necesitas del SimBrief y dónde introducirlos en el MCDU para un vuelo correcto.

Datos del SimBrief - Donde Encontrarlos

En el **OFP** (Flight Plan) de SimBrief busca estas secciones:

- NAV LOG: Tabla con waypoints, altitudes y velocidades
- PERF DATA: Tiempos, pesos, velocidades de cálculo
- FUEL: Combustible total, trip fuel, ZFW
- ROUTE: Cadena completa de la ruta

Tabla: Datos Mínimos y Donde Introducirlos

Dato	Donde en SimBrief	Donde en MCDU
Ruta	Sección ROUTE	INIT > FROM/TO
Pesos	PERF DATA (ZFW, GW)	INIT > BLOCK
Combustible	FUEL (TOTAL FUEL)	INIT > BLOCK
Velocidades V1/VR/V2	TAKEOFF DATA	PERF > TAKE OFF
Flaps T/O	TAKEOFF DATA (usually 1+F)	PERF > TAKE OFF
Cost Index	PERF DATA (CI)	INIT > FUEL PRED
Niveles de Vuelo	NAV LOG (altitudes por waypoint)	F-PLAN (manual)
Restricciones	NAV LOG (velocidades/altitudes)	F-PLAN (manual)

Proceso Paso a Paso

Página INIT

• FROM/TO:

- 1. **ORIGIN**: Código OACI de salida (ej: LEMD)
- 2. **DESTINATION**: Código OACI llegada (ej: LEBL)
- 3. ALTERNATE: Aeropuerto alternativo
- 4. **CO RTE**: Código de ruta (de SimBrief)

BLOCK FUEL:

- 1. BLOCK: Combustible total de SimBrief
- 2. **ZFW**: Zero Fuel Weight (aparece automático al introducir BLOCK)
- 3. TRIP WIND: Opcional vientos de crucero

• FUEL PRED:

- 1. CRZ FL/TRANS FL: Nivel de vuelo crucero (ej: 350)
- 2. **COST INDEX**: Número de SimBrief (típico: 20-50)

Página F-PLAN

• Introducir Ruta:

- 1. Si usaste CO RTE: ya aparece la ruta completa
- 2. Si no: introducir waypoints manualmente desde NAV LOG

• Verificar Restricciones:

- 1. En waypoints con restricciones: /XXXX (altitud) o XXXX/ (velocidad)
- 2. Ejemplo: /10000 = no sobrepasar 10000 pies

Página PERF

• TAKE OFF:

- 1. V1/VR/V2: Velocidades de despegue de SimBrief
- 2. TRIM: Aparece automático
- 3. FLAPS: Configuración (ej: 1)
- 4. **FLEX TO TEMP**: Si aplica (ej: 55)

APPR:

- 1. VAPP: Velocidad aproximación (aparece automático)
- 2. MARGIN: Opcional

Proceso Rápido - 5 Minutos

- 1. INIT > FROM/TO: ORIG, DEST, ALT, CO RTE
- 2. INIT > BLOCK: Introducir combustible total
- 3. F-PLAN: Verificar ruta correcta
- 4. PERF > TO: V1, VR, V2, FLAPS

5. INIT > FUEL PRED: CRZ FL, COST INDEX

Errores Comunes y Soluciones

• "NOT IN DATABASE": Waypoint mal escrito o no existe

• "INVALID ENTRY": Formato incorrecto en restricciones

• Ruta no aparece: Verificar código en CO RTE coincide con SimBrief

• Pesos incorrectos: BLOCK FUEL debe ser el TOTAL de SimBrief

Datos Opcionales Pero Recomendados

- WINDS (INIT): Vientos en crucero para mejor gestión combustible
- RESTRICTIONS (F-PLAN): Para vuelo más realista
- SEC F-PLAN: Plan de vuelo secundario por si hay desvíos

Guía Rápida: Pilotar A320neo en MSFS 2020

Esta es una guía práctica con los pasos esenciales para pilotar el A320neo, centrada en las posiciones de las palancas, botones clave y indicaciones del PFD.

Configuración Inicial

- Interacción con el Cockpit: Ve a Opciones > General > Accesibilidad > Interacción con el Cockpit y cámbialo a LEGACY.
- Cómo usar perillas:
 - 1. **Girar**: Cursor sobre la perilla + rueda del mouse
 - 2. **Empujar/Pullar**: Cursor sobre la perilla hasta ver flecha (↑↓) + clic izquierdo

Tabla de Fases de Vuelo

Fase de Vuelo	Acciones (Palancas y Botones)	Indicaciones en el PFD	
Preparación Despegue	- Palanca gases: TOGA o FLX	- Modo TOGA/FLX visible	
Ascenso Inicial	- Retraer tren (~1500 pies)	- LVR CLIMB (aviso blanco)	
	- Palanca a CL (CLIMB)	- Aviso desaparece al poner CL	
Activación Piloto Automático	- Botón AP (o tecla Z)	- FD activo	
	- A/THR se activa automáticamente	- SPEED en verde	
Gestión de Ascenso	- Girar perilla Altitud	- Símbolo punto (●) junto a altitud	
	- Empujar perilla para modo gestionado	- ALT CST (si hay restricción)	
Aproximación	- Botón APPR para capturar ILS	- LOC y G/S en verde	
	- Configurar flaps y tren manualmente	- LAND y FLARE al final	
Aterrizaje	- Desconectar AP antes de tocar pista - Indicadores de		

03:53 06/11/2025 17/20 COMPONENTES PC

Consejos Importantes

- Sistema Fly-by-Wire: No uses trim manual, el sistema se autocompensa
- A/THR Problema Común: Si no controla velocidad, verificar que palanca esté en CL
- Modos de Vuelo:
 - 1. **Gestionado** (): Empujar perilla sigue plan de vuelo
 - 2. **Seleccionado** (subrayado): Tirar/girar perilla control manual
- **Velocidades**: La **V** roja es límite estructural, velocidad crucero >400 nudos

Solución de Problemas

- Avión no desciende: Girar perilla altitud y EMPÚJALA para activar descenso
- Aceleración excesiva: Verificar posición palanca en CL
- No captura ILS: Presionar APPR antes de interceptar la senda

FPL

• Añadir RMK/DAYLIGHT en el FPL si voy a volar en horario diurno cuando es de noche en VFR

Cartas

Cartas de España: https://aip.enaire.es/AIP/

☐ Estructura general

☐ Significado de cada entrada

Código	Significado	Descripción
ADC	Datos del aeródromo / Aerodrome Chart	Plano general del aeropuerto: pistas, calles de rodaje, plataformas, puntos críticos.
PDC	Parking/Docking Chart	Distribución de puestos de estacionamiento y atraque de aeronaves.
GMC	Ground Movement Chart	Movimientos en tierra: rutas de rodaje, puntos de espera, zonas no visibles.
AOC	Aerodrome Obstacle Chart	Obstáculos en el entorno del aeropuerto.
SID	Standard Instrument Departure	Procedimientos de salida por instrumentos desde una pista específica.
STAR	Standard Arrival Route	Procedimientos de llegada por instrumentos hacia una pista específica.
IAC	Instrument Approach Chart	Cartas de aproximación por instrumentos (ILS, LOC, VOR, RNP, etc.).
VAC	Visual Approach Chart	Aproximación visual: puntos de entrada, circuitos de tránsito, altitudes.

☐ ¿Cómo se usan?

- Pilotos IFR (Instrument Flight Rules) usan SID, STAR e IAC para seguir rutas y procedimientos publicados.
- Pilotos VFR (Visual Flight Rules) usan VAC para navegar visualmente y evitar obstáculos.
- Controladores ATC usan ADC, GMC y PDC para gestionar tráfico en tierra y asignar puestos.

IAC 1: NDB RWY 36

IAC 2: RNP Z RWY 36 (solo LPV)

IAC 3: RNP Y RWY 36

IAC 4: NDB genérica

IAC 5: RNP A (aproximación a pista sin designación específica) | | VAC 1 | Visual Approach Chart | Aproximación visual, útil en condiciones VFR. |

Explicacion de esta carta:

https://aip.enaire.es/AIP/contenido AIP/AD/AD2/GCLA/LE AD 2 GCLA IAC 3 en.pdf

☐ ¿Qué tipo de aproximación es? RNP Y RWY 36: Aproximación RNAV (GPS) con especificación RNP.

LNAV: Solo guía lateral (no hay descenso asistido).

LNAV/VNAV: Si tu avión tiene baro-VNAV, puedes seguir una pendiente de descenso.

No LPV: No tiene guía vertical tipo ILS, como sí lo tiene la RNP Z.

□ Ruta de aproximación

Punto	Función	Altitud	Curso	Distancia
ARACO	IAF (Inicio)	4500 ft	269°	_
LA400	Intermedio	3000 ft	269°	8.0 NM
RECKA	IF (Final Intermedio)	2400 ft	269°	7.8 NM
LA07S	FAF (Final Approach Fix)	2400 ft	359°	4.4 NM
RW36	MAPT (Punto de decisión)	154 ft	359°	6.9 NM

☐ Perfil de descenso Pendiente de descenso: 5.34% (≈3.06°), bastante pronunciada.

Altitud mínima (MDA): Determinada por el tipo de aeronave y categoría.

Si no ves la pista en el MAPT (RW36): Debes ejecutar la frustrada.

☐ Aproximación frustrada (Missed Approach) Virar a la derecha hacia LA440, luego a ARACO ascendiendo a 4500 ft para entrar en patrón de espera.

Velocidad máxima: 185 kt en el viraje.

☐ Requisitos de navegación RNAV1 requerido: Precisión de navegación de ±1 NM.

DME crítico: El Hierro (HR) 113.20 MHz, canal 79X.

No se permite circuito visual (circling).

☐ Frecuencias útiles Servicio Frecuencia

ATIS	118.250 MHz
Torre	118.900 MHz
Aproximación	126.100 MHz
Rodaje (GMC)	121.800 MHz

☐ ¿Qué debes tener en cuenta como piloto? Esta aproximación es ideal si tu avión no tiene capacidad LPV, pero sí puede seguir LNAV/VNAV.

La pendiente de descenso es más pronunciada que la estándar, así que hay que estar atento al perfil vertical.

El terreno en La Palma es montañoso, por lo que seguir la ruta con precisión es clave.

Cartas de aproximación por instrumentos

☐ IAC 1: NDB RWY 36 Tipo: Aproximación no precisa basada en radioayuda NDB (Non-Directional Beacon).

Cómo funciona: El avión se guía por señales de radio emitidas desde el NDB "BV" de La Palma.

Ventajas: No requiere GPS ni sistemas avanzados.

Limitaciones: Menor precisión, más susceptible a interferencias y errores por viento o terreno.

☐ IAC 2: RNP Z RWY 36 (solo LPV) Tipo: Aproximación GPS precisa con guía vertical (LPV = Localizer Performance with Vertical guidance).

Cómo funciona: Usa satélites y el sistema EGNOS para simular un ILS sin radioayudas terrestres.

Ventajas: Muy precisa, permite descensos similares a ILS (pendiente de 3.00°).

Limitaciones: Solo disponible para aeronaves con capacidad LPV certificada.

☐ IAC 3: RNP Y RWY 36 Tipo: Aproximación GPS no precisa (LNAV o LNAV/VNAV).

Cómo funciona: Usa GPS para quía lateral, y si el avión tiene baro-VNAV, también quía vertical.

Ventajas: Más flexible que LPV, útil para aviones sin capacidad SBAS.

Limitaciones: Altitud mínima de decisión más alta, menos precisa que LPV.

☐ IAC 4: NDB genérica Tipo: Aproximación NDB sin pista específica asignada.

Cómo funciona: Similar a IAC 1, pero puede servir como base para maniobras visuales o circling.

Ventajas: Útil como respaldo o en condiciones VFR marginales.

Limitaciones: No alineada directamente con la pista, requiere más habilidad del piloto.

☐ ¿Cuál usar?

Carta	Precisión	Guía vertical	
NDB RWY 36	Baja		Receptor ADF
RNP Z RWY 36	Alta	□ LPV	GPS + SBAS (EGNOS)

Carta	Precisión	Guía vertical	
RNP Y RWY 36	Media	🛮 si VNAV	GPS + baro-VNAV
NDB genérica	Baja		Receptor ADF

Notas para MSFS2020

- Para vuelos en VFR en LittleNavMap hacer "traffic patern" para despegue y aterrizajes
- Mirar en las cartas de navegacion lospuntos de entrada y salida a pistas
- En littlenavmap mirar los puntos de visual para notificar al ATC el paso por ellos.
- En espacios aéreos A no se puede volar con VFR hay que mirar a que altura empiezan.
- Addon "air manager"

From:

https://www.atorcha.es/ - Atorcha

Permanent link:

https://www.atorcha.es/msfs/msfs2020

Last update: 20:34 05/11/2025

